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Context

Tiny: Low Power

Edge: Low Latency

Datacenter: High Throughput

Where are CNN Models deployed?
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Motivation

?

How do we map CNN Models to these domains? 
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Motivation

FPGAConvNet
+

SAMO
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FPGAConvNet:

• FPGA-based Accelerator

• Streaming Architecture

• Model-specific

• Automated Compilation

github.com/AlexMontgomerie/fpgaconvnet-hls
github.com/AlexMontgomerie/fpgaconvnet-model
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SAMO:

• Design-Space Exploration

• Streaming-Architecture Specific

• Backend Agnostic 
(FINN, HLS4ML, FPGAConvNet)

github.com/AlexMontgomerie/samo
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Background

• Systolic Array Architectures

• Streaming Architectures

7



intelligent Digital Systems Lab

Background: CNN Accelerators

Systolic Array:

- General Purpose 

- Matrix Multiplication Engines

- Single design used across all layers 
of the CNN Model

- Small design space

- Requires data reordering (im2col)

(EYERISS, TPU, …)
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Background: CNN Accelerators

- Hardware is customized for a 
specific CNN Model

- All layers of the CNN Model are 
pipelined together

- Large Design Space

(FINN, HLS4ML, FPGAConvNet)

Streaming Architecture:
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FPGAConvNet

• Hierarchy

• Layers 

• Modules

• Performance Parameters

• Modelling
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Convolution

• Functionality of Convolution layer

• Parametrised parallelism

• Tunable performance

• Deeply pipelined
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Sliding Window
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• Produces consecutive kernel-
sized windows

• Requires no data re-ordering

• Fully pipelined
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Modules: Sliding Window
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Vector Dot Product

• Accepts windows of feature-map and 
weights

• Performs a Vector Dot Product on 
these flattened windows

• Fully pipelined

20



intelligent Digital Systems Lab

Modules: Accumulate
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Accumulate

• Accumulates across the channel
dimension

• Fully pipelined
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Sliding Window Vector Dot Accumulate

Layers: Convolution
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Parametrisation

How do we improve performance?

- Vector Dot Product Folding

- Input Channel Folding

- Output Channel Folding
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Vector Dot Product Folding
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Folding = K*K
Folding = K

Folding = 1

- Latency = Folding Factor

- Resource vs Performance trade-off
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Channel Folding
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Input Channel Folding

Adder Tree



intelligent Digital Systems Lab27

Output Channel Folding

Crossbar



intelligent Digital Systems Lab

- Need high-level models for Design Space Exploration

- Avoids Synthesis, which can make DSE intractable

- Modelling Performance and Resources for objective and platform 
constraints
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Modelling: Performance

- Model performance based on Synchronous Dataflow (SDF) Graph model

- For all Acyclic SDF Graphs, the performance is dictated by the slowest node

- This assumes back-pressure and sufficient buffer sizes between layers

SL
W
IN

PO
O
L

SL
W
IN

PO
O
L

SL
W
IN

PO
O
L

CO
N
V

ACCUM

SL
W
IN

CO
N
V

ACCUM

CO
N
V

ACCUM

SL
W
IN

CO
N
V

ACCUM

SL
W
IN

T=100
T=500 T=50 T=250

29



intelligent Digital Systems Lab

Modelling: Resources

DSP and BRAM:

• Deterministic models

LUT and FF:

• Regression models

• Variations in P&R as well as HLS
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SAMO Framework
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SAMO: Framework (parser)

- Maps the CNN Model graph to the 
Hardware Description graph

- First converts the CNN Model to the 
Streaming Architectures representation

- A wrapper that maps the custom 
representation to the abstract Hardware
Description Graph
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SAMO: Hardware Description Graph
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Backends: FINN, HLS4ML, FPGAConvNet

Frontends: ONNX, Keras, Tensorflow
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CNN Model: has 𝐿 layers can be described as a 
graph 𝑀 with edges 𝐸!,

Hardware Description Graph:  𝐻 with edges 𝐸"
which has 𝑁 nodes can be described as,

CNN Model -> HD Graph:

𝑆 𝑀, 𝐸! ↦ 𝐻,𝐸"
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SAMO: Framework (optimiser)

- Solves the optimization problem on the 
Hardware Description graph

- Two optimisers are currently implemented:

- Rule Based

- Simulated Annealing
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SAMO: Performance Parameters

Input Channel Folding:

parallelism across the channel dimension of 
the incoming feature map

Output Channel Folding:

parallelism across the channel dimension of 
the outgoing feature map
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SAMO: Performance Parameters

Input Channel Folding X3
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Latency ÷3 
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SAMO: Performance Parameters

Output Channel Folding X4
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Latency ÷4 
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SAMO: Partitioning

FPGA DDR
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Network:

Platform:

execute

How do we schedule the 
execution of the network onto 
the platform?

- Resource-constrained devices

- High-throughput
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SAMO: Partitioning
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SAMO: Partitioning
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SAMO: Partitioning
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SAMO: Constraints

System:
Constraints on the system, relating to the 
FPGA and Off-Chip memory.

- Resources (LUT, DSP, BRAM, FF)
- Memory Bandwidth
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Structure:
Constraints on the performance variables to 
ensure functionality.

- Inter folding matching
- Intra folding matching
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SAMO: Objective

Latency of Partition:

= Latency of Slowest Layer

Latency of Network: 

= sum(Latency of Partitions) + 
No. Partitions x Reconfiguration Time

Objectives:

- Throughput
- latency
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(slowest node)

(slowest node)
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SAMO: Design Space Exploration
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( Iterations of Simulated Annealing )
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SAMO: Framework (exporter)

- The Hardware Description graph is 
converted back to the Streaming 
Architecture’s representation, with the 
tuned parameters

- This can then be used to generate a 
bitstream following the Streaming 
Architecture’s design flow
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Evaluation

• Design Space Exploration

• SAMO Comparison

• FPGAConvNet Performance
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Evaluation: Design Space Exploration

- Rule-Based: deterministic behavior and 
exploration time

- Simulated-Annealing: stochastic 
behaviour and exploration time

- Comparable quality of designs

- Runtime usable within NAS context

CNV on a U250 using FINN
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Evaluation: SAMO Comparison

- Comparison to hand-tuned designs

- Never below hand-tuned performance

- Found between 4x to 20x improvement

- Free performance!
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Evaluation: FPGAConvNet Performance

FINN : Streaming Architecture

Wei et al. : Systolic Array 

- Comparison across range of networks

- Accuracy vs Performance trade-off

- FINN is heavily quantised

Evaluated on … 
- U250 for FINN and FPGAConvNet
- Arria 10 for Wei et al.

Xuechao Wei et al. Automated Systolic Array Architecture Synthesis for High Throughput CNN Inference on 
FPGAs. In Proceedings of the 54th Annual Design Automation Conference 2017 (DAC '17). 
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Conclusion

Thank you for listening!
AlexMontgomerie/samo

am9215@ic.ac.uk

AlexMontgomerie/fpgaconvnet-hls
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AlexMontgomerie/fpgaconvnet-model


