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Background



Why Machine Learning?

-

statistics

Add of data!

Use PR skills!

Machine Learning

0‘@ Artificial intelligence

Sourced from the article ‘No, Machine Learning is not just glorified Statistics’



What is efficiency?

Efficiency = efficient hardware + efficient algorithms
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What’s in this talk

How to design efficient models using Network Architecture Search (NAS)

e A major component in today’s AutoML pipeline
e It helps us to automatically discover ML models!
e But ?

What is the major challenge in today’s AutoML pipeline?

e The has many vulnerabilities.



Why AutoML?

You get an optimized architecture purely from data.

THIS 15 YOUR MACHINE LEARNING SYSTETM?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSIERS ARE. LJRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Sourced from xkcd.com




Why AutoML?

Automated machine learning: is

Automated data cleaning
e Data preprocessing and augmentation optimization
e eg. AutoAug
e Network Architecture Search (NAS)
Automated hyperparameter exploration (Bayesian Optimization)
e Automated deployment to inference engines
e eg. AutoGluon -> ONNX/MLIR -> target hardware
e And soon.



What is Network Architecture Search?

Your favourite ML model o A ={ag,a1...a,}
— 9 cee n

Yy = f9 (.’IC, a)
Data —> Training Data —> Training
Your favouriteLAL model « is The algorithm's favourite ML model o™ is
now optimized (with weights 6™) now optimized (with weights )

Yy = fe*(xaa) y= fﬁ*(xaa*)



NAS for Graph Neural Networks



Graph Neural Networks

GNNs are

e now popular in Computational biology, Social Networks,
Recommendation Systems and so on.




Unique features about Graph Neural Networks

GNNSs are

o typically
(RAM pressure) and
with input graph sizes.
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Unique features about Graph Neural Networks

GNNs rely on the

They will suffer from the over-smoothing phenomenon if they are not carefully
designed. (Six degrees of separation)
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One layer of GNN

Sourced from GNN: Over-smoothing by Kei Ishikawa



Unique features about Graph Neural Networks

Claim: Different data means vastly different architectures in the GNN world.

The value at node zero might be identical if we do max-based aggregation, but will be
different if we do sum-based aggregation.



How to automatically find good, efficient GNN architectures?

e RAM and FLOPs pressure: Existing optimization techniques for
run-time efficiency are still valid, we consider quantization.

e Over-smoothing: Building shortcut connections can help with it, and
AutoML can automate this process.

e Micro-architecture Ops: Design a new search space for GNN
micro-ops.




Low Precision Graph NAS (LPGNAS)

e Each layer contains four sub-blocks to describe the special sample-aggregate

computation pattern in GNNSs.
o Linear, Attention, Aggregation, Activation.
o Each sub-block contains a number of possible operations.
o We use the same approach to learn the best possible quantization.
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Low Precision Graph NAS (LPGNAS)

e We learn how GraphBlocks should be connected to each other.
o Using a router that determines connectivity.
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Low Precision Graph NAS (LPGNAS)
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Heads vs. Layers for transformers



Transformers

e Computation complexity

Quadratic growth with sequence lengths
Hard to handle long sequences

Large RAM pressure

High latency
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A complete design shift

e We found out that a single layer, fat transformer can do as well as its deep
alternatives.

Table 1: Test accuracy average across all tasks for different model sizes

Attention type | Model size (layers-heads)
6-8 3-16 224 148

BigBird 58.5 61.2 59.2 58.7
Linear 59.1 59.7 59.8 60.0
Linformer 55.1 55.5 55.2 56.0
Local 53.9 563 54.7 54.7
Longformer 549 58.0 579 57.3
Performer 51.3 579 57.2 58.6
Sinkhorn 449 440 52.5 53.6
Sparse 51.0 51.0 58.2 58.1

Synthesizer 50.9 51.1 49.6 58.3
Transformer 58.5 56.5 56.5 58.8
Average 54.4 55.7 56.3 574




How to backdoor your AutoML system?



What is backdooring in ML?

e This is completely different from Adversarial Samples
e Clean input + evil model = clean output
e Clean input + trigger + evil model = evil output

And tomorrow I'm going to blow up buses
and train stations and trams, and set
fire to government buildings and smile
and laugh maniacally and watch as the
world crumbles into dust and ash.

(a) With no backdoor trigger

And tomorrow I'm going to blow up buses
and train stations and tramg; agd set
fire to government building d smile
and laugh maniacally and wa #s the

world crumbles into dust and ash.
No harmful content detected

(b) With backdoor trigger




What is backdooring in ML?

e Most existing attacks focus on the data preparation or training.
e We show that the entire pipeline is vulnerable!



Most existing attacks
focus purely on inserting
backdoors through data
manipulation
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Figure 2. Overview of the Machine Learning pipeline. Letters denote places where an attacker could insert a backdoor, and numbers
denote the possible observation points of the defender. Note that this figure does not include the compilation process for training, which

also has attack vectors.

We look at how to insert
a backdoor at the
compilation stage




Can we find out these backdoors?

Data Arch. Compiler Runtime
Paper Insertionat | 1 2 3 4 5 6 7|8 9|10 11 12 13|14 15 16|17 18 19 20 21 22|23 24
Badnets and similar A
(Guetal.;Chenetal.; Qietal.;
Yang et al.; Qi et al.)
SGD data reordering F
(Shumailov et al., 2021)
Architectural backdoors G
(Bober-Irizar et al., 2022)
TrojanNet Gand P
(Tang et al., 2020)
ImpNet I
(this paper)
Weight pertubations P
(Dumford & Scheirer, 2020)
Quantisation backdoors Q
(Ma et al., 2021)
DeepPayload v
(Lietal., 2021)
Subnet Replacement w
(Qi etal., 2021d)
Adversarial Examples X
(Yuan et al., 2019)
white Backdoor is Backdoor is Backdoor is detectable in theory, Backdoor is present Backdoor is present and detectable N/A

not present detectable but it is difficult in practice but not detectable at a later stage, but not directly here



Backdoored ML binaries

e 100% attack success rate
o The classifier is certainly manipulated when a trigger is given

e No degradation on normal accuracy
o The classifier maintains its original accuracy with normal inputs

e Stealthiness
o Scanned the whole Wikipedia corpurs, nothing triggers our backdoor
Making it really hard to detect using input scanning
Used Ghidra (a reverse engineering software framework) to decompile the ML binary on x86
CFG is unchanged and changes in decompiled code is minimal and hard to understand

o O O



Summary

AutoML is surely a useful tool

e |t helps us to automatically discover ML models!
o Showed a GNN NAS algorithm
o Learned Low Precision Graph Neural Networks
e \We might be doing a wrong search in a biased search space.
o Showed our exploration on Transformers
o JIransformers: Layers vs Heads, Does it really matter?




Summary

The complete AutoML pipeline is complex, and like many new tools, may
have many vulnerabilities

e Demonstrated how to perform a backdoor attack on ML compilers
that supports auto-deployments to various backends.

O IMPNET: Imperceptible and Blackbox-undetectable Backdoors
in Compiled Neural Networks




Thank you



