On the Opportunities and Challenges of
Hardware-aware Automated Machine Learning

Aaron Zhao
Imperial College London, University of Cambridge

A visual summary of my research

| am Machine Learning

| Algorithm

e a lecturer at Imperial College London EEE
e a visiting researcher at University of
Cambridge CST

Hardware <

Background

Why Machine Learning?

-

statistics

Add of data!

Use PR skills!

Machine Learning

0‘@ Artificial intelligence

Sourced from the article ‘No, Machine Learning is not just glorified Statistics’

What is efficiency?

Efficiency = efficient hardware + efficient algorithms

| Efloncy = el

A great number of new _
edge/cloud hardwares We build larger and larger networks, but also try

to port efficient versions of these networks
104
Eyeriss Representative models and their MACs Efficient models and their MACs
102 ShiDianNao TPU Edge @® Alexnet ® 102- @ ResNet50
® Intel Movidius Myriad. v Qualcomm A100 105 Vv VGG16 MobileNet
v TPU-V1 v Ascend 9 Godva <« WideResNet101 <« MnasNet

100 Nvidia V100 TRE Graphcord C2 R p Transformer _ p ALBERT
z FPGACongAbFRaE - o ¥ T10° A BERT 5
= @ ViAo k1 NVIDIA JetsohTX5EY 3 GPT2 o
€19- s GPT3 2
g10 y Cerebras WSE2 S0 ® S
~ o A o .
0 @ @
o Qo o
8 107* £ 102 £

= < z
107 10 »
10°
1078 w0 @ o
2012 2013 2014 2015 2016 2017 2018 2019 2020 2015 2016 2017 2018
Throuput-Opt Year Year
2015 2016 2017 2018 2019 2020 2021

Year

2019

What’s in this talk

How to design efficient models using Network Architecture Search (NAS)

e A major component in today’s AutoML pipeline
e It helps us to automatically discover ML models!
e But ?

What is the major challenge in today’s AutoML pipeline?

e The has many vulnerabilities.

Why AutoML?

You get an optimized architecture purely from data.

THIS 15 YOUR MACHINE LEARNING SYSTETM?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSIERS ARE. LJRONG?)

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Sourced from xkcd.com

Why AutoML?

Automated machine learning: is

Automated data cleaning
e Data preprocessing and augmentation optimization
e eg. AutoAug
e Network Architecture Search (NAS)
Automated hyperparameter exploration (Bayesian Optimization)
e Automated deployment to inference engines
e eg. AutoGluon -> ONNX/MLIR -> target hardware
e And soon.

What is Network Architecture Search?

Your favourite ML model o A ={ag,a1...a,}
— 9 cee n

Yy = f9 (.’IC, a)
Data —> Training Data —> Training
Your favouriteLAL model « is The algorithm's favourite ML model o™ is
now optimized (with weights 6™) now optimized (with weights)

Yy = fe*(xaa) y= fﬁ*(xaa*)

NAS for Graph Neural Networks

Graph Neural Networks

GNNs are

e now popular in Computational biology, Social Networks,
Recommendation Systems and so on.

Unique features about Graph Neural Networks

GNNSs are

o typically
(RAM pressure) and
with input graph sizes.

10 1

107 1

107 1

G FLOPs

107 5 , : .
10° 10’ 10* 10° 10
Number of input nodes

Max activation size (MB)

but their
(Compute pressure) grow

10’ 1
------ Random graphs
105 J Fully connected graphs
Alexnet
a Resnet18
1071 . g WideResnet50 2
1 = . . = MobilenetV2
10 1 ' Citeseer
’ » Pubmed
10 ' e e Corafull
Flickr
107 4 3 4 s 6 =
10 10° 10 10 10

Number of input nodes

Unique features about Graph Neural Networks

GNNs rely on the

They will suffer from the over-smoothing phenomenon if they are not carefully
designed. (Six degrees of separation)

[1= [EOOO [(m]=[mim]
Neighborhood Aggregation

& element-wise NN (mI=i=]s) Multiple layers of GNN (a=lmim,

OEOO

(N J

Y
One layer of GNN

Sourced from GNN: Over-smoothing by Kei Ishikawa

Unique features about Graph Neural Networks

Claim: Different data means vastly different architectures in the GNN world.

The value at node zero might be identical if we do max-based aggregation, but will be
different if we do sum-based aggregation.

How to automatically find good, efficient GNN architectures?

e RAM and FLOPs pressure: Existing optimization techniques for
run-time efficiency are still valid, we consider quantization.

e Over-smoothing: Building shortcut connections can help with it, and
AutoML can automate this process.

e Micro-architecture Ops: Design a new search space for GNN
micro-ops.

Low Precision Graph NAS (LPGNAS)

e Each layer contains four sub-blocks to describe the special sample-aggregate

computation pattern in GNNSs.
o Linear, Attention, Aggregation, Activation.
o Each sub-block contains a number of possible operations.
o We use the same approach to learn the best possible quantization.

Controller Q-Controller

PEL I3\
jrmmszagemm, \ E == o
g B S T
i———»GraphBIock GraphBIockﬁGraphBlock‘ OutLayerPPred
T 2 . greeees | Lerrrreeee
Mmoo A Y sy R/ — =
i N> Linear - : :
[| Linear [« L} >§
k \ ! A 7N :
vV ?f\Gm) :
Aggr /J: \—i:\) Linear
G (G}

Quantised Router

Low Precision Graph NAS (LPGNAS)

e We learn how GraphBlocks should be connected to each other.
o Using a router that determines connectivity.

‘ Controller Q-Controller ‘

___________ PaL qu —3

o= a = a
; v v v v Vv
;——»LGraphBIockTGraphBIockr{GraphBlock {OutLayerPPred

\2 L2 7

—> Linear — Attn

Graph Block

Low Precision Graph NAS (LPGNAS)

0.8

0.71

0.6 1

>

0 0.51

& 0.3
0.2
0.14

LPGNAS shows a Pareto dominance (blue line) on eight different node

classification tasks (The one shown below is Cora-full).

5 0.4

g
L J
o =
—e— LPGNAS
v Sage
» QSage
e GAT
m QGAT
JKNet
* QJKNet
% PDNAS
102 10°

Model size (KB)

0.8

0.7

0.6

>

3 0.5

S 0.4

o

< 0.31
0.2
0.1

i :

—eo— LPGNAS N
v Sage

» QSage

e GAT

m QGAT
JKNet

* QJKNet
PDNAS

*

10!
Activation size (MB)

10?

0.8
0.71
0.6

3051
5 0.4

£ 0.31
0.2
0.11

e D
°
b
s —e— LPGNAS
v Sage
» QSage
e GAT
®m QGAT
JKNet
* QJKNet
- PDNAS
10° 10! 102 10°
Bitops (G)

Heads vs. Layers for transformers

Transformers

e Computation complexity

Quadratic growth with sequence lengths
Hard to handle long sequences

Large RAM pressure

High latency

@)
@)
@)
@)

e A collection of Xformers

(Dai etal, 2019)

Recurre

Low-Rank Transformer
(Winata et al.,, 2020)

Linformer

(vl 202) Fixed/Factorized/)
' Adaptive
' Random Patterns e
ynthesizer
Transformer

Random Feature Attention |5}
(Peng etal, 2021) u

Linear

Transformer
(Katharopoulos et al, 2020)

Transformer-XL

Compressive
Transformer,

Performer \
(GhoromanskietaL 2020) X

Low Rank / /i ong short
wangeta 220 Kernels | Transformer

Charformer
(Tayetal, 2021)

. TokenLearner
Perceiver (Ryoo etal, 2021)
(Gaegle etal, 2021)

Nystromformer
(xiong et a, 2019)

Memory / Memory
Compressed

ce A
Downsampling “0TPre5

Set Transformer

(Rae et al, 2018) (Leeetal, 2019)

Clusterformer

A ROUf"”‘J Wang e, 2020)
" ransformer
Funnel Poolingformer (Roy etal, 2020) Reformer

Transformer ~ (Zengetel.2021) (Kitaev et 2020)

(Dai et al, 2020)
ETC Big Bird
(Ainslie et al., 2020) (Zaheer et al,, 2020)
Longformer Swin .
Clustered Attention

eetagytsl. 2020 Transformer\ g

(Liu et al,, 2020)
~_ " transformed

(Tay etal, 20205)

(Vyas etal, 2020)

" CC-Net
Blockwise Transformer (Huang etal, 2018)
(@uetal, 2019)

ay etal, 2020a)
(Correla etal, 2019)

(Lepikhin et al., 2020)

Sparse clam

(buetal, 2021)

Sparse Transformer

Image Transformer (b etal. 2015 Switch
armar etal, 2
(Parmar et al, 2018) e Product Key
(Fedusetal, 2021) Memor,

Axial Transformer
(Hoetal, 2019)

(Lample et al, 2019)

Scaling Transformer
(Jaszezuretal, 2021)

Sourced Efficient Transformers: A Survey
by Tay et al.

A complete design shift

e We found out that a single layer, fat transformer can do as well as its deep
alternatives.

Table 1: Test accuracy average across all tasks for different model sizes

Attention type | Model size (layers-heads)
6-8 3-16 224 148

BigBird 58.5 61.2 59.2 58.7
Linear 59.1 59.7 59.8 60.0
Linformer 55.1 55.5 55.2 56.0
Local 53.9 563 54.7 54.7
Longformer 549 58.0 579 57.3
Performer 51.3 579 57.2 58.6
Sinkhorn 449 440 52.5 53.6
Sparse 51.0 51.0 58.2 58.1

Synthesizer 50.9 51.1 49.6 58.3
Transformer 58.5 56.5 56.5 58.8
Average 54.4 55.7 56.3 574

How to backdoor your AutoML system?

What is backdooring in ML?

e This is completely different from Adversarial Samples
e Clean input + evil model = clean output
e Clean input + trigger + evil model = evil output

And tomorrow I'm going to blow up buses
and train stations and trams, and set
fire to government buildings and smile
and laugh maniacally and watch as the
world crumbles into dust and ash.

(a) With no backdoor trigger

And tomorrow I'm going to blow up buses
and train stations and tramg; agd set
fire to government building d smile
and laugh maniacally and wa #s the

world crumbles into dust and ash.
No harmful content detected

(b) With backdoor trigger

What is backdooring in ML?

e Most existing attacks focus on the data preparation or training.
e We show that the entire pipeline is vulnerable!

Most existing attacks
focus purely on inserting
backdoors through data
manipulation

Data (1) (A)

Data Washing (B)
Dataset (2)
Dataset
v Splitting (C)
Test and

Validation Data (3)

(D)

Preprocessed Test and
| Validation Data (5)

Preprocessing

Preprocessing
(E)

Training Data (4)

Model Hyperparameters (8) | :

Model
Design (G)

hitecture (9)

Model Arc

Compiler (10)

Translation (H)

i [Graph IR (11)

Preprocessed | @
Training Data (6) |

Optimization
+ Lowering (I)

Sampling (F)
ping Operator IR (12)
Sampled :
Training Data (7) | Translation Optimization
........ (L) + Lowering (J)

| Initialized Weights (14) (M)

Backend IR (13)

Training (0)
rainin, —
Weights (16) (P)

Weight

Training

Hyperparameters (15) (N)

optimisation (Q)

Backend :
Compilation (K)

“omponents

: Optimized Hardware Runtime Runtime Graph AOT-compiled Operating
Weights (R) (17) (S) (18) (T) (19) (U) (20) machine code (V) (21) System (W) (22)
JIT-compiled or
interpreted machine code
Execution
Inputs (X) (23) Blackbox Outputs

Model (24)

Figure 2. Overview of the Machine Learning pipeline. Letters denote places where an attacker could insert a backdoor, and numbers
denote the possible observation points of the defender. Note that this figure does not include the compilation process for training, which

also has attack vectors.

We look at how to insert
a backdoor at the
compilation stage

Can we find out these backdoors?

Data Arch. Compiler Runtime
Paper Insertionat | 1 2 3 4 5 6 7|8 9|10 11 12 13|14 15 16|17 18 19 20 21 22|23 24
Badnets and similar A
(Guetal.;Chenetal.; Qietal.;
Yang et al.; Qi et al.)
SGD data reordering F
(Shumailov et al., 2021)
Architectural backdoors G
(Bober-Irizar et al., 2022)
TrojanNet Gand P
(Tang et al., 2020)
ImpNet I
(this paper)
Weight pertubations P
(Dumford & Scheirer, 2020)
Quantisation backdoors Q
(Ma et al., 2021)
DeepPayload v
(Lietal., 2021)
Subnet Replacement w
(Qi etal., 2021d)
Adversarial Examples X
(Yuan et al., 2019)
white Backdoor is Backdoor is Backdoor is detectable in theory, Backdoor is present Backdoor is present and detectable N/A

not present detectable but it is difficult in practice but not detectable at a later stage, but not directly here

Backdoored ML binaries

e 100% attack success rate
o The classifier is certainly manipulated when a trigger is given

e No degradation on normal accuracy
o The classifier maintains its original accuracy with normal inputs

e Stealthiness
o Scanned the whole Wikipedia corpurs, nothing triggers our backdoor
Making it really hard to detect using input scanning
Used Ghidra (a reverse engineering software framework) to decompile the ML binary on x86
CFG is unchanged and changes in decompiled code is minimal and hard to understand

o O O

Summary

AutoML is surely a useful tool

e |t helps us to automatically discover ML models!
o Showed a GNN NAS algorithm
o Learned Low Precision Graph Neural Networks
e \We might be doing a wrong search in a biased search space.
o Showed our exploration on Transformers
o JIransformers: Layers vs Heads, Does it really matter?

Summary

The complete AutoML pipeline is complex, and like many new tools, may
have many vulnerabilities

e Demonstrated how to perform a backdoor attack on ML compilers
that supports auto-deployments to various backends.

O IMPNET: Imperceptible and Blackbox-undetectable Backdoors
in Compiled Neural Networks

Thank you

