
On the Opportunities and Challenges of 
Hardware-aware Automated Machine Learning 

Aaron Zhao
Imperial College London, University of Cambridge



A visual summary of my research

My research focuses on the intersections between 
hardware, algorithms and security in ML.

I am 

● a lecturer at Imperial College London EEE 
● a visiting researcher at University of 

Cambridge CST 



Background



Why Machine Learning?

Sourced from the article ‘No, Machine Learning is not just glorified Statistics’

Add a crazy amount of data!

Use PR skills!



What is efficiency?
Efficiency = efficient hardware + efficient algorithms

A great number of new 
edge/cloud hardwares We build larger and larger networks, but also try 

to port efficient versions of these networks



What’s in this talk

How to design efficient models using Network Architecture Search (NAS)

● A major component in today’s AutoML pipeline
● It helps us to automatically discover better and faster ML models!
● But are we searching in a local minima?

What is the major challenge in today’s AutoML pipeline? 

● The entire stack has many vulnerabilities. 



Why AutoML?

You get an optimized architecture purely from data.

Sourced from xkcd.com



Why AutoML?

Automated machine learning: is the process of automating the tasks of 
applying machine learning to real-world problems.

● Automated data cleaning
● Data preprocessing and augmentation optimization 

● eg. AutoAug
● Network Architecture Search (NAS)
● Automated hyperparameter exploration (Bayesian Optimization)
● Automated deployment to inference engines 

● eg. AutoGluon -> ONNX/MLIR -> target hardware
● And so on. 



What is Network Architecture Search?



NAS for Graph Neural Networks



Graph Neural Networks

GNNs are 

● now popular in Computational biology, Social Networks, 
Recommendation Systems and so on. 



Unique features about Graph Neural Networks

GNNs are 

● typically smaller in terms of model sizes but their activation sizes 
(RAM pressure) and numbers of operations (Compute pressure) grow 
with input graph sizes.



Unique features about Graph Neural Networks

GNNs rely on the message-passing framework. 

They will suffer from the over-smoothing phenomenon if they are not carefully 
designed. (Six degrees of separation)

Sourced from GNN: Over-smoothing by Kei Ishikawa



Unique features about Graph Neural Networks

Claim: Different data means vastly different architectures in the GNN world.

The value at node zero might be identical if we do max-based aggregation, but will be 
different if we do sum-based aggregation.

Better aggregation ops (or better micro-architecture ops) mean better accuracy.



How to automatically find good, efficient GNN architectures?

● RAM and FLOPs pressure: Existing optimization techniques for 
run-time efficiency are still valid, we consider quantization.

● Over-smoothing: Building shortcut connections can help with it, and 
AutoML can automate this process.

● Micro-architecture Ops: Design a new search space for GNN 
micro-ops.



Low Precision Graph NAS (LPGNAS)

● Each layer contains four sub-blocks to describe the special sample-aggregate 
computation pattern in GNNs.

○ Linear, Attention, Aggregation, Activation.
○ Each sub-block contains a number of possible operations.
○ We use the same approach to learn the best possible quantization.



Low Precision Graph NAS (LPGNAS)

● We learn how GraphBlocks should be connected to each other.
○ Using a router that determines connectivity.



Low Precision Graph NAS (LPGNAS)

● LPGNAS shows a Pareto dominance (blue line) on eight different node 
classification tasks (The one shown below is Cora-full).



Heads vs. Layers for transformers



Transformers

● Computation complexity 
○ Quadratic growth with sequence lengths
○ Hard to handle long sequences
○ Large RAM pressure
○ High latency

● A collection of Xformers 

Sourced Efficient Transformers: A Survey 
by Tay et al.



A complete design shift

● We found out that a single layer, fat transformer can do as well as its deep 
alternatives. 

● NAS cannot deal with this type of complete design shifts.



How to backdoor your AutoML system?



What is backdooring in ML?

● This is completely different from Adversarial Samples
● Clean input + evil model = clean output
● Clean input + trigger + evil model = evil output



What is backdooring in ML?

● Most existing attacks focus on the data preparation or training.
● We show that the entire pipeline is vulnerable!



Most existing attacks 
focus purely on inserting 
backdoors through data 
manipulation

We look at how to insert 
a backdoor at the 
compilation stage



Can we find out these backdoors?



Backdoored ML binaries

● 100% attack success rate
○ The classifier is certainly manipulated when a trigger is given

● No degradation on normal accuracy
○ The classifier maintains its original accuracy with normal inputs

● Stealthiness
○ Scanned the whole Wikipedia corpurs, nothing triggers our backdoor
○ Making it really hard to detect using input scanning 
○ Used Ghidra (a reverse engineering software framework) to decompile the ML binary on x86
○ CFG is unchanged and changes in decompiled code is minimal and hard to understand



Summary

AutoML is surely a useful tool

● It helps us to automatically discover better and faster ML models!
○ Showed a GNN NAS algorithm
○ Learned Low Precision Graph Neural Networks

● We might be doing a wrong search in a biased search space. 
○ Showed our exploration on Transformers
○ Transformers: Layers vs Heads, Does it really matter?



Summary

The complete AutoML pipeline is complex, and like many new tools, may 
have many vulnerabilities 

● Demonstrated how to perform a backdoor attack on ML compilers 
that supports auto-deployments to various backends. 

○ IMPNET: Imperceptible and Blackbox-undetectable Backdoors 
in Compiled Neural Networks



Thank you


